188体育app官网_188体育投注

CCF YOCSEF深圳将举办“高性能计算前沿进展”学术报告会
2015-05-07 阅读量:10 小字

春末夏初之际,我们迎来了2015年第一场YOCSEF学术报告会。本次会议我们邀请了美国伊利诺伊理工大学孙贤和教授,计算所张云泉研究员,北卡州立大学的唐厚君博士生做主题为“高性能计算前沿进展"的系列学术报告。会议将于2015年5月5日(星期二)14:30-18:00在深圳大学科技楼701报告厅召开。欢迎大家踊跃报名。
 

主办单位:中国计算机学会青年计算机科技论坛深圳分论坛(CCF YOCSEF深圳)、深圳大学 广东省普及型高性能计算机重点实验室、深圳市电脑学会
 

执行主席:毛睿   CCF YOCSEF深圳   副主席

议  程:
14:00 签到
14:30 报告会开始
  CCF YOCSEF深圳 组织方  致辞
14:40 特邀讲者:孙贤和, 美国伊利诺伊理工大学教授
演讲题目:Parallelism for High Performance Data Processing: a rethinking
15:40 特邀讲者:张云泉,中国科学院计算技术研究所研究员
演讲题目:yaSpMV: Yet Another SpMV Framework on GPUs
16:40 特邀讲者: 唐厚君,美国北卡罗来纳州立大学博士研究生
演讲题目:Usage Pattern-Driven Dynamic Data Layout Reorganization


报告1:Parallelism for High Performance Data Processing: a rethinking 特邀讲者:孙贤和

报告提要:Scalable data management for big data applications is a challenging task. It puts even more pressure on the lasting memory-wall problem, which makes data access the prominent performance bottleneck for high performance computing (HPC), and has changed the interest of HPC to HPDP (High Performance Data Processing). HPC is known for its massively parallel architectures. A natural way to achieve HPDP is to increase and utilize memory concurrency to a level commensurate with that of HPC. We argue that substantial memory concurrency exists at each layer of current memory systems, but it has not been fully utilized. In this talk we reevaluate memory systems and introduce the novel C-AMAT model for system design analysis of concurrent data accesses. C-AMAT is a paradigm shift to support sustained data accessing from a data-centric view. The power of C-AMAT is that it has opened new directions to reduce data access delay. In an ideal parallel memory system, the system will explicitly express and utilize parallel data accesses. This awareness is largely missing from current memory systems and missing from current architecture and algorithm design. We will review the concurrency available in modern memory systems, present the concept of C-AMAT, and discuss the considerations and possibility of optimizing parallel data access for big data applications. We will also present some of our recent results which quantize and utilize parallel I/O following the parallel memory concept for HPDP. 

 

报告2:yaSpMV: Yet Another SpMV Framework on GPUs 特邀讲者:张云泉


报告提要:SpMV is a key linear algebra algorithm and has been widely used in many important application domains. As a result, numerous attempts have been made to optimize SpMV on GPUs to leverage their massive computational throughput. Although the previous work has shown impressive progress, load imbalance and high memory bandwidth remain the critical performance bottlenecks for SpMV. In this talk, we present our novel solutions to these problems. First, we propose a new SpMV format, called blocked compressed common coordinate (BCCOO), which uses bit flags to store the row indices in a blocked common coordinate (COO) format so as to alleviate the bandwidth problem. We further improve this format by partitioning the matrix into vertical slices to enhance the cache hit rates when accessing the vector to be multiplied. Second, we revisit the segmented scan approach for SpMV to address the load imbalance problem. We propose a highly efficient matrix-based segmented sum/scan for SpMV and further improve it by eliminating global synchronization. Then, we introduce an auto-tuning framework to choose optimization parameters based on the characteristics of input sparse matrices and target hardware platforms. Our experimental results on GTX680 GPUs and GTX480 GPUs show that our proposed framework achieves significant performance improvement over the vendor tuned CUSPARSE V5.0 (up to 229% and 65% on average on GTX680 GPUs, up to 150% and 42% on average on GTX480 GPUs) and some most recently proposed schemes (e.g., up to 195% and 70% on average over clSpMV on GTX680 GPUs, up to 162% and 40% on average over clSpMV on GTX480 GPUs).
 

报告3:Usage Pattern-Driven Dynamic Data Layout Reorganization  特邀讲者:唐厚君


报告提要:As scientific simulations move towards exascale and generate increasingly huge amounts of data, the data access performance for analytic applications becomes crucial. A mismatch often happens between write and read patterns of data accesses, typically resulting in poor read performance. Data layout reorganization has been used to improve the locality of data accesses. However, current data reorganizations are static and focus on generating a single (or set of) optimized layouts that rely on prior knowledge of exact future access patterns. We propose a framework that recognizes the data usage pattern, replicates the data of interest in multiple reorganized layouts that would benefit common read patterns, and makes runtime decisions on selecting a favorable layout for the read pattern. This framework supports reading individual elements and chunks of a multi-dimensional array of variables. Our pattern-driven layout selection strategy achieves multi-fold speedups compared to reading from the original dataset.
 

热门动态
2025-03-13
由中国计算机学会(CCF)主办,CCF YOCSEF 保定、河北农业大学承...
2025-03-12
由中国计算机学会(CCF)主办,CCF YOCSEF 保定、河北金融学院承...
2025-03-03
2025年3月1日,CCF YOCSEF保定分论坛在华北电力大学自动化317会...
2025-01-21
2025年1月19日13:00,CCF YOCSEF保定第七届学术委员会第二次AC...
2025-01-19
CCF YOCSEF保定换届预热Club顺利举行,逐梦征程即将启航!2025年...
2025-01-19
党的二十届三中全会明确提出要进一步全面深化改革,推进中国式现...
2024-12-22
“回顾年度工作,规划未来蓝图”——CCF YOCSEF保定分论坛举办冬...
2024-12-09
青年是实现中华民族伟大复兴与社会进步的生力军,是党和国家事业...
2024-12-08
CCF YOCSEF保定举办技术论坛《人工智能赋能植物表型的机遇与挑战...
2024-11-17
“一稿多投”长期以来被认为是一种学术不端行为,但禁止“一稿多...
2024-10-24
2024年10月19日下午,中国计算机学会CCF YOCSEF合肥在羚羊工业互...
2024-10-20
人工智能等新兴技术的深度应用,涌现了许多新的网络安全威胁,如...
2024-09-23
借鉴成功经验,提升论坛举办质量——CCF YOCSEF保定分论坛CLUB活...
2024-09-14
桂花飘香,灯下共谱新华章——CCF YOCSEF保定分论坛第五次选题会...
2024-09-10
2024年9月9日晚7点,中国计算机学会保定分论坛第四次选题会在河...
2024-08-27
2024年8月3日,CCF YOCSEF合肥顺利举办技术论坛“从基座模型到终...
2024-08-27
2024年8月3日,CCF YOCSEF合肥顺利举办技术论坛“从基座模型到终...
2024-07-23
“重振旗鼓 野草新生”——CCF YOCSEF保定分论坛2024年度学术委...
2024-06-16
2024年6月14日晚上,CCF YOCSEF 保定在海棠小镇举办涅槃之路-重...
2024-03-17
2024年3月16日上午,由中国计算机学会(CCF)主办的青年计算机科技...
188体育app官网: