中国计算机学会青年计算机科技论坛
CCF Young Computer Scientists & Engineers Forum
CCF YOCSEF合肥
2019年1月5日(星期六)9:00-17:40
安徽大学磬苑校区图书馆一楼文典阁将举行
专题探索班Theme Discovery Symposium
表示学习的理论、算法与应用
表示学习(Representation Learning)是机器学习领域一个新的研究热点,旨在将原始数据表示成低维、实值、稠密的向量形式,使得得到的向量形式可以在向量空间中具有表示以及推理的能力,同时可轻松方便地作为机器学习模型的输入,它避免了手动提取特征的麻烦,允许计算机学习使用特征的同时,也学习如何提取特征:学习如何学习。近年来,以深度学习为代表的表示学习技术受到广泛关注,在语音识别、图像分析和自然语言处理等领域取得重要研究进展。
本期CCF YOCSEF合肥将举办TDS(Theme Discovery Symposium)专题探索班“表示学习的理论、方法及应用”,有幸邀请到机器学习领域重量级的专家学者做主题报告,就表示学习理论最新的研究成果和应用进行学术探讨,具体围绕表示学习的前沿探讨,表示学习的理论基础和主要方法,以及表示学习在社交网络、图像分析、自然语言处理等领域的应用展开讨论。我们期望本次论坛能够有效推动机器学习和表示学习理论、技术和应用的发展,增进领域学者间的交流与互动,使参加者在掌握学科基础知识的同时,跟踪本领域最新技术动态,了解未来技术发展趋势。
日 程
08:30— 9:00 签到
09:00--09:10 开幕式
09:10--10:10 Broad Learning via Fusion of Heterogeneous Information for Recommendations
Philip S. Yu,University of Illinois at Chicago
10:10--10:40 茶歇 & 合影