学科前沿讲习班
The CCF Advanced Disciplines Lectures
CCF ADL 第87期
主题 社交网络与数据挖掘
2017年12月22-24日 北京
社交网络和数据挖掘是计算机学科相关研究中的热点,其具体研究涵盖理论、关键技术以及互联网核心应用等各个方面。随着在线社交网络和物理社交网络的快速融合,社交网络正渗透到国家安全、经济发展和社会生活等各个方面,从大数据的产生、到基于群体智慧(如:众包)的数据加工、再到信息的消费,社交网络和数据挖掘的应用无处不在。社交网络分析的研究也逐渐从宏观的网络结构拓扑分析、发展到中观的社区发现等、再到更微观的社交关系、影响力以及用户行为建模等,然而社交网络数据的挖掘和分析还有很多本质上的挑战,包括用户交互、社交信息论的基础理论,社交数据挖掘的关键技术等。
本期CCF学科前沿讲习班《社交网络和数据挖掘》邀请到了社会网络分析和数据挖掘领域重量级的专家学者做主题报告。他们将对社交网络和数据挖掘的基础理论、关键技术方法以及当前热点问题进行深入浅出的介绍,并对如何开展本领域前沿技术研究等进行探讨。使参加者在了解学科热点、提高理论水平的同时,掌握最新技术趋势。
学术主任:唐杰 清华大学、刘知远 清华大学
主办单位:中国计算机学会
独家合作媒体:雷锋网
特邀讲者:
Jiawei Han,美国伊利诺伊大学香槟分校(UIUC)计算机系教授,IEEE和ACM Fellow,美国信息网络学术研究中心主任。曾担任KDD、SDM和ICDM等国际知名会议的程序委员会主席,创办了ACM TKDD学报并任主编。在数据挖掘、数据库和信息网络领域发表论文600余篇。出版了数据挖掘专著“Data Mining: Concepts and Techniques”,成为数据挖掘国内外经典教材。曾获SIGKDD 2004最佳创新奖和ICDE 2002杰出贡献奖。
报告题目:Multi-Dimensional Analysis of Massive Text Corpora, Jiawei Han
摘要:The real-world big data are largely unstructured and interconnected, in the form of natural language text. It is highly desirable to view and analyze massive text data from multi-dimensional angles. This poses a major challenge on how to transform unstructured text data into structured text and analyze such data in multidimensional space. To facilitate such analytical functionality, we propose a textcube modeling and discuss how to construct such cubes from massive text corpora and how to conduct multidimensional OLAP analysis using such textcubes. In the past several years, we have developed a text mining approach that only needs distant or minimal supervision but relies on massive data. We show (i) quality phrases can be mined from such massive text data, (ii) types can be extracted from massive text data with distant supervision, (iii) entities, attributes and values can be discovered by meta-path directed pattern discovery, (iv) faceted taxonomy can be constructed from massive corpora, (v) textcubes can be constructed from massive text, and (v) multi-dimensional analysis can be conducted on such cubes. We show such a paradigm represents a promising direction on turning massive text data into structured and useful knowledge.
Philip S. Yu,美国伊利诺伊大学芝加哥分校(UIC)计算机科学系教授、信息技术领域Wexler讲座教授,清华大学数科院院长,IEEE和ACM Fellow。曾获2016年ACM SIGKDD创新奖,2013年IEEE CS技术成就奖,2003年IEEE ICDM研究贡献奖。在数据挖掘等领域国际著名学术期刊及会议上发表论文1千余篇,论文被引用超过88000次,H-index(高引用指数)达140,申请专利300余项。曾任ACM TKDE主编、IEEE TKDD主编、IEEE ICDE和IEEE Data Mining会议指导委员会成员。曾获2013年ICDM十年最有影响论文奖,2014年EDBT久经考验奖(Test of Time Award)。
报告题目:Broad Learning via Fusion of Social Network Information
摘要:In the era of big data, there are abundant of data available across many different data sources in various formats. “Broad Learning” is a new type of learning task, which focuses on fusing multiple large-scale information sources of diverse varieties together and carrying out synergistic data mining tasks across these fused sources in one unified analytic. Great challenges exist on “Broad Learning” for the effective fusion